3 Takes on Debugging Machine Learning

machinelearning_debugging

Source: S. Zayd Enam

S. Zayd Enam:

The difficulty is that machine learning is a fundamentally hard debugging problem. Debugging for machine learning happens in two cases: 1) your algorithm doesn’t work or 2) your algorithm doesn’t work well enough. What is unique about machine learning is that it is ‘exponentially’ harder to figure out what is wrong when things don’t work as expected. Compounding this debugging difficulty, there is often a delay in debugging cycles between implementing a fix or upgrade and seeing the result. Very rarely does an algorithm work the first time and so this ends up being where the majority of time is spent in building algorithms.

Aleksandar Chakarov, Aditya Nori, Sriram Rajamani, Shayak Sen, Deepak Vijaykeerthy

Unlike traditional programs (such as operating systems or word processors) which have large amounts of code, machine learning tasks use programs with relatively small amounts of code (written in machine learning libraries), but voluminous amounts of data. Just like developers of traditional programs debug errors in their code, developers of machine learning tasks debug and fix errors in their data. However, algorithms and tools for debugging and fixing errors in data are less common, when compared to their counterparts for detecting and fixing errors in code. In this paper, we consider classification tasks where errors in training data lead to misclassifications in test points, and propose an automated method to find the root causes of such misclassifications. Our root cause analysis is based on Pearl’s theory of causation, and uses Pearl’s PS (Probability of Sufficiency) as a scoring metric. Our implementation, Psi, encodes the computation of PS as a probabilistic program, and uses recent work on probabilistic programs and transformations on probabilistic programs (along with gray-box models of machine learning algorithms) to efficiently compute PS. Psi is able to identify root causes of data errors in interesting data sets.

 

[youtube https://www.youtube.com/watch?v=ZbX8DvjvA0I]

“The problem here is the methodology for scaling this [machine learning verification] up to a whole industry is still in progress. We have been doing this for a while; we have some clues for how to make it work, but we don’t have the decades of experience that we have in developing and verifying regular software.” (Peter Norvig quoted in Network World)

About GilPress

I'm Managing Partner at gPress, a marketing, publishing, research and education consultancy. Also a Senior Contributor forbes.com/sites/gilpress/. Previously, I held senior marketing and research management positions at NORC, DEC and EMC. Most recently, I was Senior Director, Thought Leadership Marketing at EMC, where I launched the Big Data conversation with the “How Much Information?” study (2000 with UC Berkeley) and the Digital Universe study (2007 with IDC). Twitter: @GilPress
This entry was posted in AI, Machine Learning. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *